Lagrange Type Errors for Truncated Jacobi Series

D. F. PAGET

Department of Mathematics, University of Tasmania, Hobart, Tasmania, 7001, Australia

Communicated by T. J. Rivlin

Received May 8, 1984

DEDICATED TO THE MEMORY OF GÉZA FREUD

Let s_n denote the formal expansion of a function f in a Jacobi series truncated after n + 1 terms. For $f \in C^{n+1}[-1, 1]$ the uniform norm of $f - s_n$ is expressed in terms of the (n+1)th derivative of f. This expression is precise when $\max(\alpha, \beta) \ge -\frac{1}{2}$ and when $-1 < \alpha = \beta < -\frac{1}{2}$ with n odd. For other values of α and β an asymptotic expression for the norm is derived. Comparisons are made with the minimax polynomial of degree no greater than n, for which it is known that $||f - p_n||_{\alpha} = (2^n(n+1)!)^{-1}|f^{(n-1)}(\eta)|$ for some $\eta \in (-1, 1)$. C 1987 Academic Press, Inc.

1. INTRODUCTION

Suppose that $f \in C^{n+1}[-1, 1]$ and f is approximated by s_n , the (n+1)th partial sum of the Jacobi series of f, given by

$$s_n(x) = \sum_{k=0}^n a_k P_k^{(\alpha,\beta)}(x),$$
 (1.1)

where

$$a_k = h_k^{-1} \int_{-1}^{1} (1-t)^{\alpha} (1+t)^{\beta} f(t) P_k^{(\alpha,\beta)}(t) dt, \qquad (1.2)$$

and

$$h_{k} = \int_{-1}^{1} (1-t)^{\alpha} (1+t)^{\beta} (P_{k}^{(\alpha,\beta)}(t))^{2} dt$$

= $\frac{2^{\alpha+\beta+1} \Gamma(k+\alpha+1) \Gamma(k+\beta+1)}{(2k+\alpha+\beta+1) \Gamma(k+\alpha+\beta+1) k!},$ (1.3)

with $\alpha > -1$ and $\beta > -1$.

0021-9045/87 \$3.00 Copyright © 1987 by Academic Press, Inc. All rights of reproduction in any form reserved. The remainder term of the approximation, $r_n(x)$, is given by

$$r_n(x) = f(x) - s_n(x).$$
 (1.4)

The aim of this paper is to derive an expression for $||r_n||_{\infty}$ in terms of the (n+1)th derivative of f, where $||r_n||_{\infty} = \max_{-1 \le x \le 1} |r_n(x)|$.

For the minimax polynomial of degree no greater than n, p_n say, which approximates f on [-1, 1], Bernstein [2] has shown that

$$\|f - p_n\|_{\infty} = \frac{1}{2^n (n+1)!} |f^{(n+1)}(\xi)|, \qquad (1.5)$$

for some $\xi \in (-1, 1)$.

Light [5] has investigated bounds for the norm of s_n , regarded as a linear operator on C[-1, 1]. His results tend to support the numerical evidence that, for each n and α , $\beta \ge -\frac{1}{2}$, the minimum of $||s_n||$ is attained when $\alpha = \beta = -\frac{1}{2}$. A similar result is obtained in this paper for $||r_n||_{\infty}$, in that, the form (1.5) is obtained when $\alpha = \beta = -\frac{1}{2}$, otherwise the coefficient of $|f^{(n+1)}(\xi)|$ is greater than $1/(2^n(n+1)!)$.

The first step in the analysis is to derive an expression for $r_n(x)$ as an integral whose integrand contains a linear factor $g_x(t)$ (see (2.12)). Treatment of this integral depends upon whether x is such that $g_x(t)$ is of constant sign on (-1, 1) or $g_x(t)$ has a zero on (-1, 1). From the first case a lower bound for $||r_n||_{\infty}$ is obtained. An upper bound for $||r_n||_{\infty}$ is obtained from both cases. When $\max(\alpha, \beta) \ge -\frac{1}{2}$ or $-1 < \alpha = \beta < -\frac{1}{2}$ with n odd, these two results are combined to give an expression of the form

$$||r_n|_{\infty} = d_n |f^{(n+1)}(\xi)|.$$
(1.6)

For other values of α and β a similar asymptotic formula, for large *n*, is derived.

When $s_n(x)$ is the truncated Chebyshev series of the first kind $(\alpha = \beta = -\frac{1}{2})$ then $d_n = 1/(2^n(n+1)!)$, the same as for the minimax polynomial.

A surprising result is that when $-1 < \alpha$, $\beta < -\frac{1}{2}$ then the coefficient d_n of the asymptotic formula is $K/(2^n(n+1)!)$, where K is some constant between 1 and $\sqrt{2}$.

2. The Remainder $r_n(x)$

Substitute a_k from (1.2) into (1.1) and interchange the order of summation and integration to give

$$s_n(x) = \int_{-1}^1 (1-t)^{\alpha} (1+t)^{\beta} f(t) \sum_{k=0}^n h_k^{-1} P_k^{(\alpha,\beta)}(t) P_k^{(\alpha,\beta)}(x) dt.$$
(2.1)

From the orthogonality property of the Jacobi polynomials it is clear that for $f(t) \equiv 1$ the above integral is 1. It follows that

$$r_n(x) = \int_{-1}^1 (1-t)^{\alpha} (1+t)^{\beta} (f(x) - f(t)) \sum_{k=0}^n h_k^{-1} P_k^{(\alpha,\beta)}(t) P_k^{(\alpha,\beta)}(x) dt.$$
(2.2)

The Christoffel-Darboux formula for Jacobi polynomials (see [1]) is

$$\sum_{k=0}^{n} h_{k}^{-1} P_{k}^{(\alpha,\beta)}(t) P_{k}^{(\alpha,\beta)}(x) = A \frac{P_{n+1}^{(\alpha,\beta)}(t) P_{n}^{(\alpha,\beta)}(x) - P_{n}^{(\alpha,\beta)}(t) P_{n+1}^{(\alpha,\beta)}(x)}{t-x},$$
(2.3)

where

$$A = \frac{(n+1)! \Gamma(n+\alpha+\beta+2)}{2^{\alpha+\beta}(2n+\alpha+\beta+2) \Gamma(n+\alpha+1) \Gamma(n+\beta+1)}.$$
 (2.4)

Substitution from (2.3) into (2.2) gives

$$r_{n}(x) = A \int_{-1}^{1} \frac{f(t) - f(x)}{t - x} (1 - t)^{\alpha} (1 + t)^{\beta} [P_{n}^{(\alpha,\beta)}(t) P_{n+1}^{(\alpha,\beta)}(x) - P_{n+1}^{(\alpha,\beta)}(t) P_{n}^{(\alpha,\beta)}(x))] dt.$$
(2.5)

Rodriguez' formula for Jacobi polynomials (see [1]) is

$$(1-t)^{\alpha}(1+t)^{\beta} P_n^{(\alpha,\beta)}(t) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dt^n} \left[(1-t)^{n+\alpha} (1+t)^{n+\beta} \right].$$
(2.6)

Hence

$$(1-t)^{\alpha}(1+t)^{\beta} \left[P_{n}^{(\alpha,\beta)}(t) P_{n+1}^{(\alpha,\beta)}(x) - P_{n+1}^{(\alpha,\beta)}(t) P_{n}^{(\alpha,\beta)}(x) \right]$$

= $\frac{(-1)^{n}}{2^{n}n!} \frac{d^{n}}{dt^{n}} \left[(1-t)^{n+\alpha} (1+t)^{n+\beta} g_{x}(t) \right],$ (2.7)

where

$$g_{x}(t) = P_{n+1}^{(\alpha,\beta)}(x) + \frac{\beta - \alpha - t(2n + \alpha + \beta + 2)}{2(n+1)} P_{n}^{(\alpha,\beta)}(x).$$
(2.8)

Observe that

$$\frac{f(t) - f(x)}{t - x} = \int_0^1 f'((t - x) u + x) \, du. \tag{2.9}$$

On substituting (2.7) and (2.9) into (2.5) and interchanging the order of integration, we have

$$r_{n}(x) = \frac{(-1)^{n}A}{2^{n}n!} \int_{0}^{1} \left(\int_{-1}^{1} f'((t-x) u + x) \right)$$
$$\times \frac{d^{n}}{dt^{n}} \left[(1-t)^{n+\alpha} (1+t)^{n+\beta} g_{x}(t) \right] dt du.$$
(2.10)

Since, for $1 \leq k \leq n$,

$$\frac{d^{n-k}}{dt^{n-k}} \left[(1-t)^{n+\alpha} (1+t)^{n+\beta} g_x(t) \right]_{t=\pm 1} = 0,$$

the integral with respect to t, in (2.10), may be integrated by parts n times to give

$$r_n(x) = \frac{A}{2^n n!} \int_0^1 u^n \left(\int_{-1}^1 f^{(n+1)} ((t-x) u + x)(1-t)^{n+\alpha} (1+t)^{n+\beta} g_x(t) dt \right) du.$$
(2.11)

Applying the mean value theorem to the integral with respect to u we have

$$r_n(x) = \frac{A}{2^n(n+1)!} \int_{-1}^{1} f^{(n+1)}((t-x) u_0 + x)(1-t)^{n+\alpha} (1+t)^{n+\beta} g_x(t) dt,$$
(2.12)

for some $u_0 \in (0, 1)$. This is the required integral form for $r_n(x)$.

If $g_x(t)$ is of constant sign on (-1, 1) then application of the mean value theorem is straightforward and an expression for $r_n(x)$ is obtainable. However, if $g_x(t)$ changes sign on (-1, 1) then we can only obtain an upper bound for $|r_n(x)|$. The two cases are treated separately.

THEOREM 2.1. If x is such that

$$(n+1)/(n+\beta+1) \leq P_n^{(\alpha,\beta)}(x)/P_{n+1}^{(\alpha,\beta)}(x) \leq (n+1)/(n+\alpha+1),$$

then, for some $\eta \in (-1, 1)$,

$$r_n(x) = \frac{2^{n+1}\Gamma(n+\alpha+\beta+2)}{\Gamma(2n+\alpha+\beta+3)} P_{n+1}^{(\alpha,\beta)}(x) f^{(n+1)}(\eta).$$
(2.13)

Proof. The condition on x implies that $g_x(t)$ is of constant sign on (-1, 1). This is readily seen by observing that for such x, $g_x(-1) g_x(1) \ge 0$

and $g_x(t)$ is linear in t. Thus applying the mean value theorem to (2.12) gives

$$r_n(x) = \frac{Af^{(n+1)}(\eta)}{2^n(n+1)!} \int_{-1}^1 (1-t)^{n+\alpha} (1+t)^{n+\beta} g_x(t) \, dt, \qquad (2.14)$$

for some $\eta \in (-1, 1)$. Writing $g_x(t)$ as

$$g_x(t) = (1-t) g_x(-1)/2 + (1+t) g_x(1)/2,$$

and using the formula (derived from [1; 6.2.1]),

$$\int_{-1}^{1} (1-t)^{a} (1+t)^{b} dt = \frac{2^{a+b+1} \Gamma(a+1) \Gamma(b+1)}{\Gamma(a+b+2)}, \quad (2.15)$$

the integral of (2.14) may be evaluated to give the result (2.13).

THEOREM 2.2. If
$$q = \max(\alpha, \beta)$$
 and x is such that
 $-(n+\beta+1)/(n+1) < P_{n+1}^{(\alpha,\beta)}(x)/P_n^{(\alpha,\beta)}(x) < (n+\alpha+1)/(n+1),$

then for some $\eta \in (-1, 1)$,

$$|r_n(x)| < \frac{2^{n+1} \Gamma(n+\alpha+\beta+2)}{\Gamma(2n+\alpha+\beta+3)} \left(\frac{n+q+1}{n+1}\right) |P_n^{(\alpha,\beta)}(x)| |f^{(n+1)}(\eta)|.$$
(2.16)

Proof. The condition on x implies that $g_x(t)$ changes sign on (-1, 1). This is readily seen by observing that for such x, $g_x(-1)g_x(1) < 0$, and $g_x(t)$ is linear in t. From (2.12) we have

$$|r_n(x)| \leq \frac{A}{2^n(n+1)!} \int_{-1}^{1} |f^{(n+1)}((t-x)u_0+x)|(1-t)|^{n+\alpha}(1+t)^{n+\beta} |g_x(t)| dt.$$

Applying the mean value theorem to this integral gives

$$|r_n(x)| \leq \frac{A}{2^n(n+1)!} |f^{(n+1)}(\eta)| \int_{-1}^1 (1-t)^{n+\alpha} (1+t)^{n+\beta} |g_x(t)| dt, \qquad (2.17)$$

for some $\eta \in (-1, 1)$. We note that, for $t \in (-1, 1)$,

$$|g_x(t)| < (1-t)|g_x(-1)|/2 + (1+t)|g_x(1)|/2.$$

Hence, using (2.15), we have

.

$$\int_{-1}^{1} (1-t)^{n+\alpha} (1+t)^{n+\beta} |g(t)| dt$$

$$< B((n+\alpha+1)|g_{x}(-1)| + (n+\beta+1)|g_{x}(1)|),$$

$$\leq B(n+q+1)(|g_{x}(-1)| + |g_{x}(1)|), \qquad (2.18)$$

where

$$B = \frac{2^{2n+\alpha+\beta+1}\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(2n+\alpha+\beta+3)}.$$
(2.19)

Since $g_x(-1)$ and $g_x(1)$ are of opposite sign, then

$$|g_x(-1)| + |g_x(1)| = |g_x(-1) - g_x(1)| = \frac{2n + \alpha + \beta + 2}{n+1} |P_n^{(\alpha,\beta)}(x)|.$$
(2.20)

Combining the results (2.17) to (2.20) we recover the required inequality (2.16).

We now use these two theorems to obtain uniform bounds for $|r_n(x)|$ on [-1, 1] and, where possible, expressions for the uniform norm of r_n .

3. Uniform Bounds for $|r_n(x)|$

To obtain uniform bounds for $|r_n(x)|$ from Theorems 2.1 and 2.2 we first require bounds for $|P_n^{(\alpha,\beta)}(x)|$ on [-1, 1]. Such bounds are given by, for example, Szegö [7; Chap. 7] and Erdélyi [4; 10.18]. The form of these bounds depends upon the values of α and β :

For $q = \max(\alpha, \beta) \ge -\frac{1}{2}$,

$$|P_n^{(\alpha,\beta)}(x)| \le \max((-1)^n P_n^{(\alpha,\beta)}(-1), P_n^{(\alpha,\beta)}(1)) = \frac{\Gamma(n+q+1)}{\Gamma(q+1) \, n!}; \quad (3.1)$$

for $-1 < \alpha = \beta < -\frac{1}{2}$,

$$|P_n^{(\alpha,\beta)}(x)| \le |P_n^{(\alpha,\alpha)}(0)| = \frac{\Gamma(n+\alpha+1)}{2^n \Gamma(n/2+\alpha+1)(n/2)!} \quad \text{if } n \text{ is even}, \quad (3.2i)$$

$$|P_n^{(\alpha,\beta)}(x)| \le P_n^{(\alpha,\alpha)}(x_n')| < \frac{\sqrt{(n+2\alpha+1)/n} \Gamma(n+\alpha+1)}{2^n \Gamma(n/2+\alpha+3/2)((n-1)/2)!} \quad \text{if } n \text{ is odd}; \quad (3.2ii)$$

for $-1 < \alpha \neq \beta < -\frac{1}{2}$,

$$|P_n^{(\alpha,\beta)}(x)| \le |P_n^{(\alpha,\beta)}(x_n')|, \tag{3.3}$$

where x'_n is one of the two maximum points of $|P_n^{(\alpha,\beta)}(x)|$ closest to $(\beta - \alpha)/(\alpha + \beta + 1)$.

Let m and M be defined by

$$m = \min_{-1 \le x \le 1} |f^{(n+1)}(x)|, \qquad (3.4i)$$

$$M = \max_{\substack{-1 \le x \le 1}} |f^{(n+1)}(x)|.$$
(3.4ii)

We are now ready to prove the main results of this paper.

THEOREM 3.1. If $q = \max(\alpha, \beta) \ge -\frac{1}{2}$ then $|r_n(x)| \le \frac{2^{n+1}\Gamma(n+\alpha+\beta+2)\Gamma(n+q+2)}{(n+1)!\Gamma(2n+\alpha+\beta+3)\Gamma(q+1)}M.$ (3.5)

Proof. If x is such that $g_x(t)$, given by (2.8), is of constant sign on (-1, 1) then the result follows from Theorem 2.1 and the inequality (3.1). Equality may be achieved only if $f^{(n+1)}$ is constant on (-1, 1) (otherwise, in Theorem 2.1, $m < |f^{(n+1)}(\eta)| < M$).

If x is such that $g_x(t)$ changes sign on (-1, 1) then the result follows from Theorem 2.2 and the inequality (3.1). The inequality (3.5) is strict in this case.

COROLLARY 3.1. If
$$q = \max(\alpha, \beta) \ge -\frac{1}{2}$$
 then, for some $\eta \in (-1, 1)$,
$$\|r_n\|_{\infty} = \frac{2^{n+1}\Gamma(n+\alpha+\beta+2)\Gamma(n+q+2)}{(n+1)!\Gamma(2n+\alpha+\beta+3)\Gamma(q+1)} |f^{(n+1)}(\eta)|.$$
(3.6)

Proof. Since $P_n^{(\alpha,\beta)}(1) = \Gamma(n+\alpha+1)/\Gamma(\alpha+1)$ and $P_n^{(\alpha,\beta)}(1)/P_{n+1}^{(\alpha,\beta)}(1) = (n+1)/(n+\alpha+1)$, then, from Theorem 2.1,

$$|r_n(1)| \ge \frac{2^{n+1}\Gamma(n+\alpha+\beta+2)\,\Gamma(n+\alpha+2)}{(n+1)!\,\Gamma(2n+\alpha+\beta+3)\,\Gamma(\alpha+1)}\,m.$$

Similarly,

$$|r_n(-1)| \ge \frac{2^{n+1}\Gamma(n+\alpha+\beta+2)\,\Gamma(n+\beta+2)}{(n+1)!\,\Gamma(2n+\alpha+\beta+3)\,\Gamma(\beta+1)}\,m.$$

Thus

$$\|r_n\|_{\infty} = \max_{1 \le x \le 1} |r_n(x)| \ge \frac{2^{n+1} \Gamma(n+\alpha+\beta+2) \Gamma(n+q+2)}{(n+1)! \Gamma(2n+\alpha+\beta+3) \Gamma(q+1)} m.$$
(3.7)

Using the same argument as in Theorem 3.1, equality in (3.7) may be achieved only if $f^{(n+1)}$ is constant on (-1, 1). If $f^{(n+1)}$ is not constant on (-1, 1) then the inequalities (3.5) and (3.7) are strict inequalities and the result (3.6) is valid for some $\eta \in (-1, 1)$. On the other hand if $f^{(n+1)}$ is constant on (-1, 1) then $m = f^{(n+1)}(\eta) = M$ for all $\eta \in (-1, 1)$ and (3.6) follows immediately.

An immediate consequence of this corollary is that if $s_n(x)$ is the truncated Chebyshev series $(\alpha = \beta = -\frac{1}{2})$ then, for some $\eta \in (-1, 1)$,

$$||r_n||_{\infty} = \frac{1}{2^n(n+1)!} |f^{(n+1)}(\eta)|,$$

which duplicates the result (1.5) for the minimax polynomial. This particular result has recently been given in [3], where the method was also extended to other types of Chebyshev series.

THEOREM 3.2. If $-1 < \alpha = \beta < -\frac{1}{2}$ and $N = [(n+1)/2]^1$ then, for n odd,

$$|r_n(x)| \leq \frac{\Gamma(N+\alpha+1/2)}{2^{n+1}N! \ \Gamma(n+\alpha+3/2)} M,$$
(3.8)

and, for n even,

$$|r_n(x)| < \frac{\Gamma(N+\alpha+1/2)}{2^{n+1}N! \ \Gamma(n+\alpha+3/2)} \frac{N+\alpha+1/2}{\sqrt{(N+\alpha+1)(N+1/2)}} M.$$
(3.9)

Proof. Both of these results follow from Theorems 2.1 and 2.2, the inequalities (3.2), and the duplication formula for the gamma function [1; 6.1.18],

$$\Gamma(2p) = \pi^{-1/2} 2^{2p-1} \Gamma(p) \Gamma(p+1/2).$$
(3.10)

The dependence on x and the possible change of sign of $g_x(t)$ on (-1, 1) is overcome by observing that, for $-1 < \alpha < -\frac{1}{2}$,

$$\frac{N+\alpha+1/2}{N+1/2} < \frac{N+\alpha+1/2}{\sqrt{(N+\alpha+1)(N+1/2)}} < \sqrt{(N+\alpha)/(N-1/2)} < 1.$$

As a consequence we note that (3.8) is valid for all *n*. Also, we again note that equality may occur in (3.8) only if $f^{(n+1)}$ is constant on [-1, 1].

COROLLARY 3.2. If $-1 < \alpha = \beta < -\frac{1}{2}$ and *n* is odd then, for some $\eta \in (-1, 1)$,

$$\|r_n\|_{\infty} = \frac{\Gamma(n/2 + \alpha + 1/2)}{2^{n+1}((n+1)/2)! \ \Gamma(n+\alpha+3/2)} \ |f^{(n+1)}(\eta)|. \tag{3.11}$$

Proof. For $-1 < \alpha < -\frac{1}{2}$ and *n* odd the maximum of $|P_{n+1}^{(\alpha,\alpha)}(x)|$ on [-1, 1] is attained at x = 0 (see (3.2i)), so that

$$\max_{\substack{-1 \leq x \leq 1 \\ n+1 \leq x \leq 1}} |P_{n+1}^{(\alpha,\alpha)}(x)| = |P_{n+1}^{(\alpha,\alpha)}(0)| = \frac{\Gamma(n+\alpha+2)}{2^{n+1}((n+1)/2)! \Gamma(n/2+\alpha+3/2)},$$

whilst $P_n^{(\alpha,\alpha)}(0) = 0$. Therefore, from Theorem 2.1,

$$\|r_n\|_{\infty} \ge |r_n(0)| \ge \frac{\Gamma(n/2 + \alpha + 1)}{2^{n+1}((n+1)/2)! \ \Gamma(n+\alpha+3/2)} M,$$
(3.12)

¹ [a] denotes the greatest integer not greater than a.

with equality possible only if $f^{(n+1)}$ is constant. The result (3.11) follows from (3.8) with N = (n+1)/2 and (3.12).

We have been unable to establish a similar result for even values of *n*. For all other values of α and β we have

THEOREM 3.3. If
$$-1 < \alpha$$
, $\beta < -\frac{1}{2}$ and $q = \max(\alpha, \beta)$ then

$$|r_n(x)| \le 2^{n+1} \frac{\Gamma(n+\alpha+\beta+2)}{\Gamma(2n+\alpha+\beta+3)} D_n M,$$
(3.13)

where

$$D_n = \max\left\{ |P_{n+1}^{(\alpha,\beta)}(x'_{n+1})|, \frac{n+q+1}{n+1} |P_n^{(\alpha,\beta)}(x'_n)| \right\}$$

Proof. The result follows immediately from Theorems 2.1 and 2.2 and the inequality (3.3).

Further results are possible utilising the asymptotic behaviour of $|P_n^{(\alpha,\beta)}(x)|$ for large *n*. In the notation of Olver [6], if $\lim_{n \to \infty} f(n)/\phi(n) = 1$ then $f(n) \sim \phi(n)$, which reads, *f* is asymptotic to ϕ .

From Szegö [7, Chap. 8] we have, if $-1 < \alpha$, $\beta < -\frac{1}{2}$ then

$$|P_n^{(\alpha,\beta)}(x'_n)| \sim \pi^{-1/2} 2^{-(\alpha+\beta+1)} K(\alpha,\beta) n^{-1/2}, \qquad (3.14)$$

where x'_n is the maximum point of $|P_n^{(\alpha,\beta)}(x)|$ on [-1, 1] and

$$K(\alpha, \beta) = |\alpha + 1/2|^{-\alpha/2 - 1/4} |\beta + 1/2|^{-\beta/2 - 1/4} |(\alpha + \beta + 1)/4|^{(\alpha + \beta + 1)/2}.$$
 (3.15)

COROLLARY 3.3. If $-1 < \alpha$, $\beta < -\frac{1}{2}$ and *n* is large then, for some $\eta \in (-1, 1)$,

$$\|r_n\|_{\infty} \sim \frac{K(\alpha, \beta)}{2^n(n+1)!} |f^{(n+1)}(\eta)|.$$
(3.16)

Proof. The proof, using Theorems 2.1 and 3.3, follows essentially the same line as that of Corollary 3.2, but with the maximum of $|P_{n+1}^{(\alpha,\beta)}(x)|$ attained at x'_{n+1} . Also we have used Stirling's asymptotic formula for the gamma function [1; 6.1.39]:

$$\Gamma(an+b) \sim \sqrt{2\pi} e^{-an}(an)^{an+b-1/2}.$$

We note that when $-1 < \alpha = \beta < -\frac{1}{2}$ (3.16) becomes

$$\|r_n\|_{\infty} \sim \frac{1}{2^{n+\alpha+1/2}(n+1)!} |f^{(n+1)}(\eta)|, \qquad (3.17)$$

which agrees asymptotically with the exact form (3.11), valid for odd values of n only.

Finally, it may be shown that, for $-1 < \alpha$, $\beta < -\frac{1}{2}$,

$$1 < K(\alpha, \beta) < \sqrt{2}, \tag{3.18}$$

so that for large n

$$||r_n||_{\infty} < \frac{\sqrt{2}}{2^n(n+1)!} M.$$

4. PARTICULAR CASES

The theorems of the previous section are now used to derive expressions for $||r_n||_{\infty}$ in some particular cases. The results are contained in Table I. Recall that $s_n(x)$ is a truncated series of Jacobi polynomials. The first column records the name of the particular polynomial with the appropriate values of α and β . The second column gives the quantity d_n of the expression

$$||r_n||_{\infty} = d_n |f^{(n+1)}(\eta)|,$$

Polynomial	d_n	d_n^*
Minimax	$\frac{1}{2^n(n+1)!}$	1
Chebyshev $T_n (\alpha = \beta = -\frac{1}{2})$	$\frac{1}{2^n(n+1)!}$	1
Legendre $P_n (\alpha = \beta = 0)$	$\frac{\sqrt{\pi}}{2^{n+1}\Gamma(n+3/2)}$	$\frac{\sqrt{\pi} n^{1/2}}{2}$
Chebyshev $U_n (\alpha = \beta = \frac{1}{2})$	$\frac{n+2}{2^{n+1}(n+1)!}$	$\frac{n}{2}$
Ultraspherical $C_n^{\alpha + 1/2} (\alpha = \beta)$		
$\alpha \ge -\frac{1}{2}$	$\frac{\Gamma(n/2 + \alpha + 1) \Gamma(n/2 + \alpha + 3/2)}{\Gamma(\alpha + 1) \Gamma(n + \alpha + 3/2)(n + 1)!}$	$\frac{\sqrt{\pi} n^{\alpha+1/2}}{2^{2\alpha+1} \Gamma(\alpha+1)}$
$-1 < \alpha < -\frac{1}{2}, n \text{ odd}$	$\frac{\Gamma(n/2 + \alpha + 1)}{2^{n+1}\Gamma(n + \alpha + 3/2)((n+1)/2)!}$	$2^{-\alpha - 1/2}$
$-1 < \alpha < -\frac{1}{2}, n$ even		$2^{-\alpha-1/2}$
Jacobi $P_n^{(\alpha,\beta)}(\alpha,\beta>-1)$		
$q = \max(\alpha, \beta) \ge -\frac{1}{2}$	$\frac{2^{n+1}\Gamma(n+\alpha+\beta+2) \Gamma(n+q+2)}{\Gamma(q+1) \Gamma(2n+\alpha+\beta+3)(n+1)!}$	$\frac{\sqrt{\pi} n^{q+1/2}}{2^{\alpha+\beta+1} \Gamma(q+1)}$
$-1 < q < -\frac{1}{2}$		$K(\alpha, \beta)$

TABLE I

where such an expression is valid. The third column gives the quantity d_n^* of the asymptotic expression, for large n,

$$||r_n||_{\infty} \sim \frac{d_n^*}{2^n(n+1)!} |f^{(n+1)}(\eta)|.$$

The first entry in the table is for the minimax polynomial so that comparisons may be made.

It should be noted that the last entry in the d_n^* column is bounded by (3.18).

From Table I we observe that when $s_n(x)$ is a truncated series of Chebyshev polynomials of the first kind, the expression for $||r_n||_{\infty}$ is precisely the same form as that for the minimax polynomial. Also when $s_n(x)$ is a truncated series of Jacobi polynomials with $-1 < \alpha$, $\beta < -\frac{1}{2}$, the asymptotic expression for $||r_n||_{\infty}$ is the same form as that for the minimax polynomial apart from a constant multiple which lies in the interval $(1, \sqrt{2})$.

REFERENCES

- 1. M. ABRAMOWITZ AND I. A. STEGUN, "Handbook of Mathematical Functions," National Bureau of Standards Applied Mathematics Series No. 55, Washington, D.C., 1964.
- 2. S. N. BERNSTEIN, "Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle," Gauthier-Villars, Paris, 1926.
- 3. D. ELLIOTT, D. F. PAGET, G. M. PHILLIPS, AND P. J. TAYLOR, Error of truncated Chebyshev series and other near minimax polynomial approximations, *J. Approx. Theory* 44, No. 3 (1984).
- A. ERDÉLYI ET AL., "Bateman Manuscript Project, Higher Transcendental Functions," Vol. 2, McGraw-Hill, New York, 1953.
- W. A. LIGHT, Jacobi Projections, "Approximation Theory and Applications" (Z. Ziegler, Ed.), pp. 187-200, Academic Press, New York, 1981.
- 6. F. W. J. OLVER, "Asymptotic and Special Functions," Academic Press, New York, 1974.
- 7. G. SZEGÖ, Orthogonal Polynomials," Amer. Math. Soc. Colloq. Publ. Vol. 23, (1939), 3rd ed., 1967.